Saturday, 6 June 2009

Free Download Medical EBOOKS

1. The ECG in Practice, DOWNLOAD

2. Buku Saku Urologi, DOWNLOAD

3. Buku Saku Klinis Kardiovaskuler, DOWNLOAD

4. Speed Memory Untuk MeningkatkanDaya Ingat, DOWNLOAD

5. Medical Animations, DOWNLOAD

6. 77 Ways to Beat Colds and Flu, DOWNLOAD

7. Pharmacy Management, DOWNLOAD

8. Colorectal Cancer, DOWNLOAD

9. Advance Therapy in Gastroenterology and Liver Disease, DOWNLOAD

10. Image Processing in Radiology, DOWNLOAD

11. Examination of Urine Sediment, DOWNLOAD

12. Prostate Cancer, DOWNLOAD

13. Oxford Handbook of Urology, DOWNLOAD

14. Surgical Complication Diagnosis and Treatment, DOWNLOAD

15. Kuby Immunology, DOWNLOAD

16. Keep Your brain Alive, DOWNLOAD

Related posts: 1. Download EBOOK Gratis Part1

Thursday, 4 June 2009

How to write a science thesis

Every student can benefit from extra help with matters of organization and style in the writing of term papers, theses, and dissertations - as a precursor to better grades and greater respect. This handy guide from the best-selling author team of "The Art of Scientific Writing" shows how to achieve maximum benefit with relatively little effort.

Based on a proven concept that assumes no special talent for writing, the book will be of great value to both native and non-native speakers of English. The treatment is rich in examples and challenging problems (with solutions provided in an appendix), applicable either in conjunction with a course or for self-study.


How can start earning money with adsense

Adsense is considered as one of the most powerful tool in a website publisher’s arsenal. It enables a person to monetize their sites easily. If used properly, it can generate a very large and healthy income for them. However if you are not using them rightly and just maximizing the income you squeeze from it, you are actually leaving a lot of money on the table. Something all people hate doing.

How you can start earning money with Adsense can be done easily and quickly. You will be amazed at the results you will be getting in such a short period of time. Start by writing some quality content articles which are also keyword incorporated. There are a lot of people given the gift of being good with words. Writing comes easy for them. Why not make it work in such a way that you will be earning some extra cash in the process.

There are actually three steps to put into mind before you begin writing your ads and having an effective Adsense.

Keyword search. Find some popular subjects, keywords or phrase. Select the ones which you think has more people clicking through. This is actually a keyword selector and suggestion tool that some sites are offering to those who are just their Adsense business.

Writing articles. Start writing original content with keywords from the topics that you have achieved in your search. Take note that search engines are taking pride in the quality of their articles and what you will be writing should keep up with their demands.

Quality content site. Build a quality content site incorporated with Adsense ads that is targeting the subject and keywords of your articles and websites. This is where all that you’ve done initially will go to and this is also where they will prove their worth to you.

The proper positioning of your ads should be done with care. Try to position your ads where surfers are most likely to click on them. According to research, the one place that surfers look first when they visit a certain site is the top left. The reason behind this is not known. Maybe it is because some of the most useful search engine results are at the top of all other rankings. So visitors tend to look in that same place when browsing through other sites.

Some of those who are just starting at this business may think they are doing pretty well already and thinking that their clickthrough rates and CPM figures are quite healthy. However, there are more techniques and styles to generate more clicks to double your earnings. By knowing these techniques and working them to your advantage, you will realize that you will be getting three times more than other people who have been previously doing what they are doing.

Finally, Adsense has some excellent tracking statistics that allows webmasters and publishers to track their results across a number of site on a site by site, page by page, or any other basis you wanted. You should be aware oft his capability and make the most of it because it is one powerful tool that will help you find out which ads are performing best. This way, you can fine tune your Adsense ads and focus more on the ones being visited the most rather than those who are being ignored.

Another thing you should know. Banners and skyscrapers are dead. Ask the experts. So better forget about banners and skyscrapers. Surfers universally ignore these kinds of ad formats. The reason behind this is that they are recognized as an advert and advert are rarely of any interest that’s why people ignore them.

To really start making money with Adsense, you should have a definite focus on what you wanted to achieve and how you will go about achieving them. As with any other kind of business ventures, time is needed coupled with patience. Do not just ignore your site and your Adsense once you have finished accomplishing them. Spare some time, even an hour, making adjustments to the Adsense ads on your sites to quickly trigger your Adsense income. Give it a try and you would not regret having gotten into Adsense in the first place.

PCR Cloning Technology and Applications

PCR had an immediate impact on cloning technology. It could produce large quantities of DNA that could be readily cloned and subsequently used to study the functions and behavior of genes in living systems.DNA cloning involves four basic steps. Scientists first isolate the source and vector DNA and free them from contaminants. They then use restriction enzymes to cut these two DNAs, creating ends that can connect the source DNA with the vector. Next they bond the source's DNA to the vector's with a DNA ligase enzyme that repairs the cuts and creates a single length of DNA. Finally the DNA is transformed into a host cell — a bacterium or another organism.

PCR-mediated cloning is a family of methods rather than a single technique. TA cloning, for example, uses Taq polymerase, an enzyme known as Tth DNA polymerase, or one of a group of other polymerases that preferentially add the base adenine (A) to particular ends of PCR products. Such products can be cloned into a vector containing complementary overhangs of the base thymidine (T). Blunt-end cloning uses DNA polymerases that possess proofreading activity, such as Pwo DNA polymerase. These actively remove mispaired nucleotides from the ends of double-stranded DNA and generate blunt-end PCR products. Researchers have also been able to amplify long lengths of DNA using mixtures of several different DNA polymerases. When the DNA fragments become longer than 10,000 bases, the conventional vectors do not work well as carriers of the target DNA. Instead scientists use hybrid vectors that contain drug resistance marker genes to allow for positive selection of the DNA fragment of interest. They are especially well suited for cloning large mammalian genes or multigene fragments.

What cloning method should a research team use? That depends on several factors, including the type of DNA polymerase, the length of the PCR product, and the purpose of the cloning experiment. Whatever approach they choose, researchers must test the bacterial host cells for the presence of the source DNA in their cytoplasm once they have the chance to divide. If the procedure has successfully transformed the vector into the host cell, the cell will test positive for the vector via a selectable marker.

In the early days of cloning, very few scientists had the skill and understanding to perform these fairly sophisticated techniques. Recently, however, the invention of pretested kits has given most life scientists simple access to this technique. CLONTECH Laboratories, Epicentre Technologies, Promega, Stratagene, and several other firms offer cloning kits and tools, along with effective technical support.

New cloning methods continue to emerge. "There will be a push to get away from traditional cloning methods toward other types of enzymes to do the cloning," says Carsten Carstens of Stratagene. "A major development will be the use of site-specific recombinant technology. We're about to release technology for using linear vectors in bacterial cells. That will be a lot more efficient in making libraries." Adds Henry Ji, Stratagene's director of new product development: "Responding to market need we have put together a program to clone antigens into expression vectors." Eppendorf Scientific has just introduced a method of cloning through electrofusion. "The general applications include monoclonal antibodies, different tumor cells, and ornamental plants," says Sharon Durbin, the company's product manager for electrofusion products.


The Human Genome Project and the commercial sequencing effort led by Celera Genomics have made significant progress in determining the DNA sequences of humans. The teams completed working drafts last year. Several labs have started to proof those drafts and to determine some of the missing sequence data. DNA sequencing uncovers important variations in the nucleotide bases, or polymorphisms, that make up our genes. These single nucleotide polymorphisms (SNPs) are associated with an increased risk of developing diseases such as cancer and heart disease. Without PCR and cloning to generate enough DNA and permit examination of the functions of the genes that contain it, life science teams would not have made this kind of progress.

PCR technology promises advances in human genetics. For example, Thilly and colleagues have founded a company, Peoples Genetics, that aims to discover the inherited mutations that occur in minuscule proportions in the population (see accompanying story, "Genetics for the People"). They believe that this is essential to discovering disease-causing mutations in human populations.

Fields of science beyond traditional molecular biology laboratories have benefited from PCR. It has become a well-recognized tool in forensic science. Police labs routinely use it to identify blood and other forms of evidence (see accompanying story, "Science in a 'Dirty, Grungy World'"). In Manchester, UK, the Forensic Science Service uses Extract-N-Amp, a kit from Sigma-Aldrich, to differentiate between marijuana and other plants.

PCR has also become a useful tool in some unexpected scientific disciplines. For example, archaeologists have found it effective to determine relationships between ancient civilizations and to study the evolutionary biology of different animal species. PCR can amplify very small samples of DNA from virtually any tissue, including examples thousands of years old. These molecular readings have become very important in validating (and sometimes disproving) scientific conclusions based on circumstantial evidence.

Cloning technology has also enabled the routine study of gene function. It is now a relatively simple process to isolate large DNA fragments that contain genes and then to express the genes in transgenic hosts. In addition, the RT-PCR technique permits scientists to determine the genes responsible for producing very low levels of messenger RNA that may play an important role in cellular metabolism and the disease process. Researchers have only scratched the surface of understanding the many processes of the living cell.

Ultimately, the tools of PCR and cloning are geared toward understanding, treating, and preventing the diseases that affect the quality of human life each day. Take rheumatoid arthritis, a disease that affects both young and old individuals. Researchers know that a cytokine called tumor necrosis factor (TNF) plays a major role in this disease. By causing immune cells to attack the body's own cells, it causes very painful inflammation. TNF binds to a specific membrane-bound receptor on the immune cells. Scientists have used recombinant DNA technology to clone an altered form of the receptor gene that codes for a soluble form of the receptor containing the TNF binding site. Injected into an arthritis patient, this modified protein binds to TNF and inhibits it from binding to the receptors on immune cells. That prevents the immune cells from initiating the signal cascade that causes inflammation.

Research teams are investigating many other disease processes in the hope of finding the key element or elements in the cell's signal transduction pathways that can present a point of attack on a disease. Several pharmaceutical companies are studying signal transduction pathways to develop drugs which can affect these key elements and prevent or treat disease.

Fewer than 20 years have passed since Kary Mullis took the celebrated drive that led to his discovery of PCR. Mullis may have left the field, but manufacturers have taken it up, making a series of refinements in the reagents and instruments used for PCR and cloning. Using these products, curious researchers will continue to identify fresh applications as they ponder what seems to be the unlimited potential of PCR and DNA cloning.

Breast Cancer Symptoms

Breast cancer is the biggest cause of cancer-related deaths amongst women. But while that sounds like bad news, those statistics don't tell the other side of the story. Many more women get breast lumps than breast cancer. The great majority of breast lumps are benign. And in cases where a breast lump is diagnosed as cancer, if it's diagnosed early the cure rate can be 90 per cent or better.

Most breast cancers develop in the glandular tissue of the breast – hence they're called 'adenocarcinomas'. They most commonly arise from the cells lining the milk ducts of the breast, and sometimes from the milk glands themselves.
Lumps are quite common in the breast in women and 95 per cent are benign. Most are due to hormonal effects on the glandular tissue causing areas of lumpy tissue.

Some are fibroadenomas (a fibroadenoma is also called a breast mouse). These are firm breast lumps made up of fibrous and glandular tissue. Fibroadenomas are more common in younger women and may become tender in the days before a menstrual period, or grow bigger during pregnancy. They don't necessarily need treatment, especially if a needle biopsy shows them to be benign (more on biopsies later) although they can be surgically removed if they're large.

Or a lump may be a cyst, a small, firm, fluid-filled sac that many women have in their breasts, especially around menstruation time. Many women have multiple cysts (sometimes called 'lumpy breasts', or fibrocystic disease). Breast cysts don't need treatment either, but they can be aspirated (drained).

A malignant (cancerous) lump is different. It tends to be hard, with an irregular edge. As it grows, it becomes attached to (and can retract) the skin or nipple. If advanced, it can give the skin a pitted appearance, like an orange peel. Sometimes the nipple can secrete a clear or bloodstained fluid, though this very uncommon.

And like other malignant tumours, it can spread beyond the site of origin. Breast cancer spreads first via the lymphatic ducts to the lymph nodes that drain the breast (these are found in the armpit closest to the breast). A malignant lump under the arm tends to be hard and fixed to surrounding tissues.

In advanced cases, cancer cells travel via the bloodstream to other organs, especially the liver, lungs, bone and brain. So there might be symptoms related to secondary cancers (also called metastases) in these organs.

In a few cases, evidence of distant spread may be the first sign that a person has breast cancer. For instance, a person might complain of back pain and be found to have metastases in the spine. The original (or 'primary') breast cancer may only be discovered after tests.

Cells in a malignant tumour multiply faster than normal cells, so it can put a strain on the body's metabolism. The person may be tired, lose weight, and lose their appetite. The more advanced the cancer, the more pronounced these symptoms are.

Of course, many other conditions can cause these symptoms. If you have these symptoms, the chance that they are due to advanced breast cancer is very low, but they should be checked by a doctor.